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Studies of Relaxation Phenomena in Polymers. I. 
The Use of Periodic Square and 

Triangular Stress Functions 
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Synopsis 
In order to evolve the methods of mechanical spectroscopy and find new methods of 

studying the rise of nonlinear viscoelasticity, periodic square and triangular stress func- 
tions have been used. A “new” viscoelastic function is defined, log JZ = g { log J1 1, 
where J1 and JZ are the compliances a t  the time (5/2 + 2n~)~- , . , ,  for an odd, periodic, 
square function and an even, periodic, triangular function, respectively, with periods of 
25. The function shows characteristic shapes for viscoelastic spring and dashpot models. 
The interrelations between the complex compliance and J1 and JZ are developed; and 
since the sum of J ,  and JZ at the time 5/2 agrees very well with the creep compliance a t  
the same time, J1 and JZ can be used as an interrelation between complex compliance 
and creep compliance. Special equipment for measuring t.he compliances J1 nd JZ is 
described. 

INTRODUCTION 

When studying viscoelastic transition phenomena in polymcrs, “mechani- 
cal spectroscopy,” i.c., the analysis of periodic or transient viscoelastic 
functions, is often used. 

Usually, viscoelastic functions such as complex modulus, relaxation, or 
retardation spectra, etc. are studied, which by their definition are limited to 
linear viscoelastic behavior. The traditional mechanical spectroscopy is 
therefore limited to small stress-strains for which the behavior can be as- 
sumed to agree with Boltzmann’s superposition principle. Phenomeno- 
logical and physical theories have been reviewed extensively for the linear 
viscoelastic behavior by R4eares2, Ih~bZit,~ Andrews4 McCrum, Read, and 
Williams,s Tobolsky and Du Pr6,B and Ferry,’l etc.; and for nonlinear visco- 
elastic behavior by Ferry,’l Ward: KubBt,3 and Y a n n a ~ . ~ * ~ o  There is no 
point in recapitulating them here. 

In spite of the very substantial theories by Halsey, White, and Eyring,” 
Rouse, l2 Bueche,l3 Zimm, l4  I i ~ b A t , ~  A n d r c ~ s , ~  Tobolsky, Aklonis, and Du 
Pr6,6 and others, there is no theory at  present which predicts in detail the 
behavior of polymers in the solid state; nor have any successful results been 
reported in the efforts to find general properties for the more frequently 
studied viscoelastic functions (e.g., Ferry,’ and Ward*). 
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Although it would be expected that any particular transition mechanism, 
independent of the type of polymer, should give an identifying characteristic 
in the viscoelastic functions, it has not yet been possible to find any recog- 
nizable features of these characteristics. Thus, it is not possible to identify 
a particular transition mechanism only by studying the shapes of the com- 
monly used viscoelastic functions, and therefore it has not been possible to 
use the traditional mechanical spectroscopy as an identification method for 
transition mechanisms in polymers. 

At stress-strains which are so large that there is no longer any approxima- 
tion to linear viscoelastic behavior, the same mechanisms as in the linear 
region will obviously appear; and, in addition, it is reasonable to expect 
that other mechanisms will arise. Besides, it is most likely that the “linear” 
mechanisms will alter. Thus, a shift in the main transition region toward 
shorter times is usual (e.g., EnderI5) and is referred to shorter relaxation 
times due to the increase in the free volume. 

In order to evolve the mechanical spectroscopy and find new methods of 
studying the rise of nonlinear viscoelasticity, a new viscoelastic function has 
been developed and is described in the following. 

STRESS FUNCTIONS 

A pair of stress functions has been chosen, with the period 21, 

(1) 
00; 2nt < t < (2n + 1)s { - 0 0 ;  (Zn + l){ < t < (Zn + 2 ) s  .l(t) = 

representing an odd, square function, and 

2ao 
1 

.2(t) = (-1)” (Zn + 1)ao - (- 1)” - t 

ni- < t < (n + l ) t  (2) 

representing an even, triangular function where n = 0,1,2,3 . . . and the 
compliances J1 and J2, defined as 

and 

n+ m 0 0  

where €1 and €2, the strain responses of the stress functions a1 and a2, re- 
spectively, are studied. In most cases, a steady state for determination of 
J I  and J2 is approximately reached after only a few periods. 

As seen in Figure 1 for a Kelvin model, the locations of el ,  at  the quarter 
periods, follow curves which are parallel to each other and to  the relaxation 
curve. The distance between the €1 curves gives J1. 
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N-1 
Fig. 1. Compliance e l / ~ ~  = 1 - e-((2N+1)a - 2 (-1)*(1 - e-(zn+l)or), and re- 

n=O 
lsxation modulus G = 0.1e-(2N+1)o, where a = r/27 = 0.1 for a Kelvin model. 

APPLICATION TO LINEAR VISCOELASTIC SYSTEMS 

The function u2(t) gives a constant stress rate, and ul(t) constitutes its 
time derivative. At the time ( { / 2  + 212r)n--rm, ~1 will not include strain 
components which vary in direct proport,ion to the time, and EZ will not in- 
clude strain components which are independent of time. 

For an ideal-linear elastic system, J1 = Jlo = const. and J 2  = 0; and for a 
linear viscous element, J1 = 0 and Jz - t. A Kelvin model, characterized 
by the overall compliance J ,  and the retardation time 7 ,  gives the com- 
pliances 

J1@/2) = 2J, {i +? (-1)" (1 - e 
n-0 

and 

For long times, i.e., >> r ,  J1+ J ,  and Jz + 0; and for short times, i.e., 
{ << r ,  J1 - r and J z  - {. A three-element model containing an elastic 
element, Jlo, connected in series with the Kelvin element will give J1 = 
f ({) + J10, while Jz remains unchanged. 

It is of interest to notice that both J1 and J z  contain the same function 
f({), and thus for the Kelvin model, 

J z / J i  = 27/r (5)  
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Fig. 2. Functions JI, Jz, and Jz/J1 for a Kelvin element and a three-element model. 

which is in complete agrecmcnt with the mechanical loss factor tan 6 = w r  
if w = 2/(. J1, Jz, and J2/J1 are shown in Figure 2 for thc Kelvin and thc 
three-element model treated above. 

The correspondence between J2/J1  and J"/J' is also valid for thc gen- 
eralized Ihlvin model. 

Thus, Jz can be looked upon as an expression for the loss mcchanisms and 
J1, as an expression for the storage mechanisms of the lincar viscorlastic 
system. 

This can also be seen from the determination of the compliances J1  and 
Jz  by Fourier analysis (e.g., Tolstow16) from complex data. As u1 is an odd 
and a2 an even periodic function, J1 and Jz can be cxprcsscd in tcrms of the 
real, J',  and imaginary, J", parts of the complex compliance, respcctivcly. 
Thus, 

and 
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where J'2n+1 and J"2n+l are the real and imaginary parts of the complex 
compliance at the frequencies 

1 

= (2n ; l)2{' 

It should be noted that the Fourier series in eqs. (6) and (7) converge 
rapidly and that  it is not often necessary to  takc into consideration more 
than the first four terms of J' and the two first terms of J". Equations (6) 
and (7) then constitute the interrelation between the complex compliance 
and the compliance functions J1 and J2. 

APPARATUS FOR MEASURING THE FUNCTIONS J1 AND Jz 

To be able to  measure the functions J1 and J2, special equipment has 
been set up in which, besides the stress functions vl and u2 in eqs. (1) and 
(2), sinusoidal stresses can also be applied. 

In  order t o  gct a constant and controllable shearing stress, a short, thin- 
walled, cylindrical specimen is twisted to  small angles. Figure 3 shows the 
apparatus schematically. The circular ends of the specimen, 0, (diameter 

Fig. 3. Apparatus for measuring functions J ,  and Jz. 
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<50 mm, length, <40 mm) arc glued to  the fixed wall, A, and thc balance, 
B. The balance is supported by two edges, C, with a distance between 
them of about 150 mm. The cdges arc carefully fixed in the centerline of 
the balance axes, and the level and the horizontal positions have been 
thoroughly adjustcd until the plate, A, and the surface, B, of thc balance 
arc parallel to  cach other without divcrgence when the balanco is revolved. 

Thc torsion of the spccimcn is measurcd by thc differential transformer, 
D, and is plotted by a recorder. To increase the sensitivity, to  insulate the 
diffcrcntial transformcr thermally from the oven, and to  gct sufficient space 
bctween the transformcr and ncighboring mctal surfaccs, it has becn fixed 
on a bar about 200 mm from the specimen. 

An ovcn, F, is placcd around thc spccimen, thc main part of the balance, 
and round thc fixcd wall. This pcrmits hcating to about 150°C with the 
aid of internally circulating air and an extcrnal hcating dcvicc. To obtain 
uniform heating, the spccimen is separated from thc surrounding hot air by 
a mctal screen (not shown in Fig. 3), which is fixcd to  the wall, A. Within 
the specimen, a metal cylinder is fixcd on thc balancc. Thus, thc tempera- 
turc of the specimen is determincd mainly by thc surrounding metal sur- 
faces and is measurcd inside and outside the spccimcn. The friction of 
the balancc is less than 

At present, the equipment can be used for the measureinent of torsion 
anglcs in the spccimen lcss than tg  4 with an accuracy greater 
than f tan 4 = which means shcar strains lcss than 7.5% with an 
accuracy greater than f on as pccimcn 10 mm long and 30 mm in 
diameter. 

Because of thc very small amount of friction at the balancing cdges and 
thc careful ndjustmcnt of their positions, torques abovc 5 pm can bc used. 
Thc uppcr limit is set by tho strength of the joints or of thc spccimcn or by 
thc angle of twist. 

The stress function ul is obtaincd by loading thc arm E of the balancc 
periodically, and the stress function u2 is obtained by moving a weight to  
and fro on the lever arm a t  a constant speed. The period, 21, of the stress 
functions can be preset automatically at eight fixcd values bctween 5 X 

pm. 

5 X 

and 5 X sec. 

CALCULATION OF CREEP 

From eqs. (3) and (4), i t  is seen bhat for the Kelvin model the sum of 
J1({ /2)  and J2({/2) approximately agrees with the crecp compliance for 
the model J(f/2) = Je( l  - e-s/27). 

The divergencc is 

('/2 + 27/[)(1 - c - ~ / ~ ~ )  

+ (1 + 27 /1 )Y( - l )" ( l  + e-(zn+1)*/2s) + 1/2(1 + 2 r / { ) }  (8) 
n = l  
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Temperature. ‘C 

Fig. 4. Comparison between creep compliance at 2.5 X 10-3 sec, calculated in accor- 
dance with the methods of Ferry” (x), Schwarzll8 (0), and Jansson (A). Dynamic data 
taken from PVAC,~  PMApl, PIB,SZ and PXMA.P3-f’ 

and it  changes. sign at f/2r = 0.7. The maximum divergence appears a t  
{ /2 r  = 2 where the logarithmic value is about 0.1. Thus, eqs. (6) and (7) 
can be used as an approximate method to determine creep from complex 
data. 

In Figures 4 and 5,  the creep compliance is compared, calculated from 
the complex compliance by methods of Ninomya and Ferry,” Struik and 
Schwarz1,l8 and from the sum of J1  and Jp .  The agreement between the 
three methods is very high. 

In  addition, Figure 6 shows the measured creep compliance compared 
with the sum of measured values of J1 and J2 for the polymers shown in 
Table I. In  this case, too, the agreement is good. Both Ferry’s and 
Schwarzl’s methods agree well with the experimental data. Therefore, 
there is no direct need for new approximate methods. (The main part of 
the very extensive literature of relations between different viscoelastic 
functions has been reviewed by Ferry,’ Ward: S c h ~ a r z l , ~ ~  and others.) 

However, the agreement between the creep compliance and the sum of 
J I  and J2 shows an aspect of the physical meaning of the functions. With 
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Fig. 5. Comparison between (a) creep compliance a t  25OC for NR calculated in accor- 
dance with the methods of Ferry1’ (X), Schwarz1,Is (0) and Jansson (A). (b) Measured 
creep compliance and calculated in accordance with the method of Jansson (A) for UR. 
Dynamic data taken from NR” and URIS. 

TABLE I 
Polymers Studied by Direct Measurements 

Polymer Description 

PVCl 
PVC-5 

(R45 from KemaNord AB), aw = 130,000 
(from KemaNord AB), R45 + 2% dioctyladipate (DOA) 

PVAc aw = 55,000 

respect to what has been said above, J1 and J2 can therefore be looked upon 
as the storage and loss compliances of creep, respectively. 

THE FUNCTION LOG J 2  = G(L0G J1f 
It is hardly probable that it will be possible to find more general proper- 

ties of J1 and J2 as functions of time or temperature than those of the more 
frequently studied viscoelastic functions. 

To eliminate the different influences of temperature or time character- 
istic for each particular polymer, the function log J 2  = yflog J1) is of in- 
terest, as well as the corresponding function in the complex plane, log 
J” = h{log J”). For linear viscoelastic systems, it can be expected that 
these two functions will give similar results. The latter function, however, 
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Fig. 6. Comparison between creep compliance and the sum of the functions J1 and JZ 
measured in the described apparatus: ( X  )from direct measurements; (A)  from the sum 
of J1 and 51. Materials described in Table I. 

based on complex compliance, is limited to linear viscoelastic systems. 
The former does not have this limitation and has been used for studies 
partly of transition mechanisms in the linear viscoelastic region and partly 
of the rise of nonlinear viscoelasticity. 

Figure 7 shows the characteristic shape of the function log J? = yflog JI) 
for a Burgers’ four-element model with a pronounced plateau zone and a 
viscous flow which is visible only for times much longer than the retardation 
time. 

In the “glassy” region, J1 approaches a constant value Jl0 as Jz  moves 
toward zero. The curve has a local maximum, and above this maximum, 
J1 approaches a constant value and JZ drops to zero in the “plateau” zone. 
The viscous flow, for this special model, is seen as an increase of J z  for a 
constant J1. 

APPLICATION TO NONLINEAR VISCOELASTIC SYSTEMS 

There is at present, no representation of nonlinear viscoelasticity in 
polymers that gives an adequate description of the behavior and which 
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Fig. 7. Viscoelastic function logJ2 = g(1og J I )  for a Kelvin element (continuous line) 
and for three Bugers models with different stiffness in the hard elastic region (dotted- 
dashed lines). Dashed line represents the viscous flow of the Burgers models. 

provides some physical insight into the origins of this behavior. From the 
viewpoint of material science, the problem can be given two different 
approache# : 

a. The Molecular Approach. It is suggested that the viscoelastic non- 
linearity is a consequence of some molecular mechanisms and the aim is to 
define them. 

b. The Continuum-Mechanical Approach. Attempts are made to ex- 
tend the formal description of linear viscoelasticity to the nonlinear region 
and form constitutive relations. The developed viscoelastic function can 
be expected to find applications in both fields. 

The study of changes in the function during the rise of nonlinearity might 
give information about the molecular mechanisms? and the detailed study 
of the strain response during the two stress cycles might provide information 
about the most suitable phenomenologic model to be applied. 

These investigations are part of a research program on Mechanical Long Term Proper- 
ties of Polymers supported by the Swedish Board for technical Development (STU). 
The author would like to thank Professor Bengt mnby  for valuable discussions on the 
subject of this paper. 
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